Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
IFFACT(x, true) → -1(x, s(0))
FACT(x) → GE(x, s(s(0)))
+1(x, s(y)) → +1(x, y)
FACT(x) → IFFACT(x, ge(x, s(s(0))))
*1(x, s(y)) → *1(x, y)
GE(s(x), s(y)) → GE(x, y)
IFFACT(x, true) → FACT(-(x, s(0)))
*1(x, s(y)) → +1(*(x, y), x)
IFFACT(x, true) → *1(x, fact(-(x, s(0))))

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)
IFFACT(x, true) → -1(x, s(0))
FACT(x) → GE(x, s(s(0)))
+1(x, s(y)) → +1(x, y)
FACT(x) → IFFACT(x, ge(x, s(s(0))))
*1(x, s(y)) → *1(x, y)
GE(s(x), s(y)) → GE(x, y)
IFFACT(x, true) → FACT(-(x, s(0)))
*1(x, s(y)) → +1(*(x, y), x)
IFFACT(x, true) → *1(x, fact(-(x, s(0))))

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 5 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

-1(s(x), s(y)) → -1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

GE(s(x), s(y)) → GE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(x, s(y)) → +1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(x, s(y)) → +1(x, y)

R is empty.
The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

+1(x, s(y)) → +1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

R is empty.
The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

*1(x, s(y)) → *1(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

FACT(x) → IFFACT(x, ge(x, s(s(0))))
IFFACT(x, true) → FACT(-(x, s(0)))

The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(*(x, y), x)
ge(x, 0) → true
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
fact(x) → iffact(x, ge(x, s(s(0))))
iffact(x, true) → *(x, fact(-(x, s(0))))
iffact(x, false) → s(0)

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

FACT(x) → IFFACT(x, ge(x, s(s(0))))
IFFACT(x, true) → FACT(-(x, s(0)))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

+(x0, 0)
+(x0, s(x1))
*(x0, 0)
*(x0, s(x1))
fact(x0)
iffact(x0, true)
iffact(x0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

FACT(x) → IFFACT(x, ge(x, s(s(0))))
IFFACT(x, true) → FACT(-(x, s(0)))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables s(s(0)) is replaced by the fresh variable x_removed.
Pair: FACT(x) → IFFACT(x, ge(x, s(s(0))))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
QDP
                        ↳ RemovalProof
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

FACT(x, x_removed) → IFFACT(x, ge(x, x_removed), x_removed)
IFFACT(x, true, x_removed) → FACT(-(x, s(0)), x_removed)

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables s(s(0)) is replaced by the fresh variable x_removed.
Pair: FACT(x) → IFFACT(x, ge(x, s(s(0))))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[13].

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

FACT(x, x_removed) → IFFACT(x, ge(x, x_removed), x_removed)
IFFACT(x, true, x_removed) → FACT(-(x, s(0)), x_removed)

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule FACT(x) → IFFACT(x, ge(x, s(s(0)))) at position [1] we obtained the following new rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
FACT(0) → IFFACT(0, false)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
FACT(0) → IFFACT(0, false)
IFFACT(x, true) → FACT(-(x, s(0)))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(x, true) → FACT(-(x, s(0)))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IFFACT(x, true) → FACT(-(x, s(0))) at position [0] we obtained the following new rules:

IFFACT(s(x0), true) → FACT(-(x0, 0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(x0), true) → FACT(-(x0, 0))

The TRS R consists of the following rules:

-(s(x), s(y)) → -(x, y)
-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
QDP
                                        ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(x0), true) → FACT(-(x0, 0))

The TRS R consists of the following rules:

-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule IFFACT(s(x0), true) → FACT(-(x0, 0)) at position [0] we obtained the following new rules:

IFFACT(s(x0), true) → FACT(x0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
QDP
                                            ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(x0), true) → FACT(x0)

The TRS R consists of the following rules:

-(x, 0) → x
ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(x0), true) → FACT(x0)

The TRS R consists of the following rules:

ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))
-(x0, 0)
-(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

-(x0, 0)
-(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
QDP
                                                    ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(x0), true) → FACT(x0)

The TRS R consists of the following rules:

ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule IFFACT(s(x0), true) → FACT(x0) we obtained the following new rules:

IFFACT(s(s(y_0)), true) → FACT(s(y_0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
QDP
                                                        ↳ ForwardInstantiation

Q DP problem:
The TRS P consists of the following rules:

FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0)))
IFFACT(s(s(y_0)), true) → FACT(s(y_0))

The TRS R consists of the following rules:

ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule FACT(s(x0)) → IFFACT(s(x0), ge(x0, s(0))) we obtained the following new rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(s(y_0), s(0)))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
QDP
                                                            ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IFFACT(s(s(y_0)), true) → FACT(s(y_0))
FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(s(y_0), s(0)))

The TRS R consists of the following rules:

ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(s(y_0), s(0))) at position [1] we obtained the following new rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(y_0, 0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
                                                          ↳ QDP
                                                            ↳ Rewriting
QDP
                                                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IFFACT(s(s(y_0)), true) → FACT(s(y_0))
FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(y_0, 0))

The TRS R consists of the following rules:

ge(0, s(y)) → false
ge(s(x), s(y)) → ge(x, y)
ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
QDP
                                                                    ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

IFFACT(s(s(y_0)), true) → FACT(s(y_0))
FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(y_0, 0))

The TRS R consists of the following rules:

ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule FACT(s(s(y_0))) → IFFACT(s(s(y_0)), ge(y_0, 0)) at position [1] we obtained the following new rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), true)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
QDP
                                                                        ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), true)
IFFACT(s(s(y_0)), true) → FACT(s(y_0))

The TRS R consists of the following rules:

ge(x, 0) → true

The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
QDP
                                                                            ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), true)
IFFACT(s(s(y_0)), true) → FACT(s(y_0))

R is empty.
The set Q consists of the following terms:

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

ge(x0, 0)
ge(0, s(x0))
ge(s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RemovalProof
                        ↳ RemovalProof
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ UsableRulesProof
                                      ↳ QDP
                                        ↳ Rewriting
                                          ↳ QDP
                                            ↳ UsableRulesProof
                                              ↳ QDP
                                                ↳ QReductionProof
                                                  ↳ QDP
                                                    ↳ ForwardInstantiation
                                                      ↳ QDP
                                                        ↳ ForwardInstantiation
                                                          ↳ QDP
                                                            ↳ Rewriting
                                                              ↳ QDP
                                                                ↳ UsableRulesProof
                                                                  ↳ QDP
                                                                    ↳ Rewriting
                                                                      ↳ QDP
                                                                        ↳ UsableRulesProof
                                                                          ↳ QDP
                                                                            ↳ QReductionProof
QDP
                                                                                ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

FACT(s(s(y_0))) → IFFACT(s(s(y_0)), true)
IFFACT(s(s(y_0)), true) → FACT(s(y_0))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: